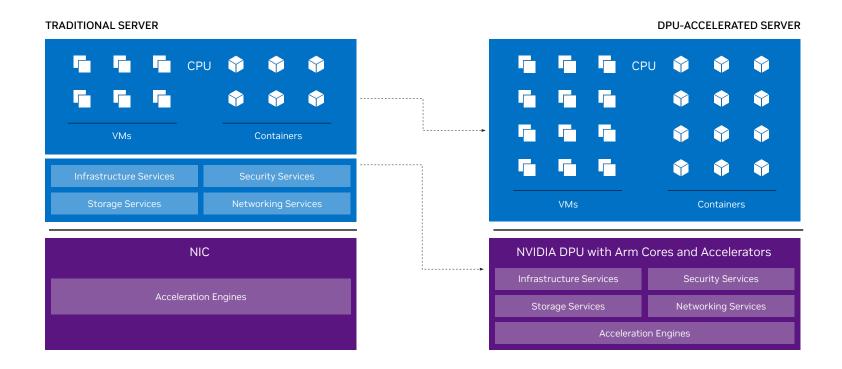


Turbocharge Kubernetes with offloaded OVN-Kubernetes and OVS on DPUs

Alin Serdean, NVIDIA; Amit Zala, NVIDIA; Mael Kimmerlin, NVIDIA; Igal Tsoiref, RedHat , 20 Nov 2025

Agenda


- What is a DPU?
- Why did we build DPF?
- SC (Service Chaining)
- Hardware acceleration using OVN-K8S CNI
- Redhat Integration

DPU

- Bluefield DPU accelerates and offload infrastructure tasks like networking, storage, and security in data centers
- It allows CPU x86 cores to focus on handling workloads by freeing it from doing infrastructure tasks
- The BlueField-3 DPU features up to 16 powerful Arm cores and dual 200GbE physical ports, delivering an impressive 400Gb/s line rate for networking traffic.

DPU - Infra Services Execution Engine

Pain points of managing DPU at scale - Life Without DPF

Manual Chaos at Scale

- Provisioning 100+ DPUs? SSH to each, run custom scripts, pray nothing breaks
- One typo in BFB config → re-flash and start over (30+ min per DPU)

Service Deployment Nightmare

- Lifecycle management of services(system services + custom 3rd party services) running on DPU
- No standard way to connect services → tribal knowledge, fragile scripts

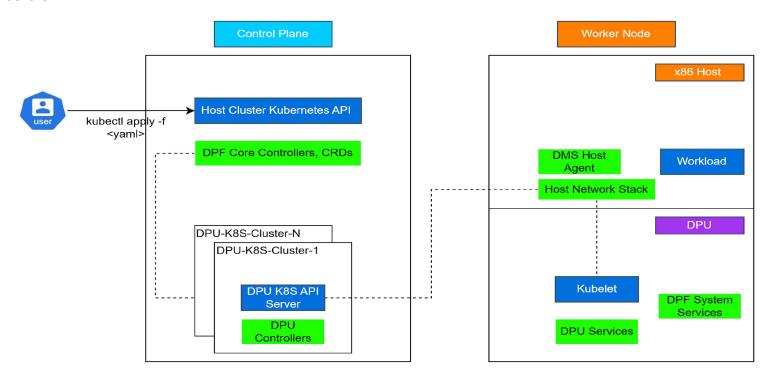
Zero Visibility

- Which DPUs are alive? Which services crashed? Manual checking or wait for alerts
- Resource usage? Unknown until DPU OOMs

Upgrade Terror

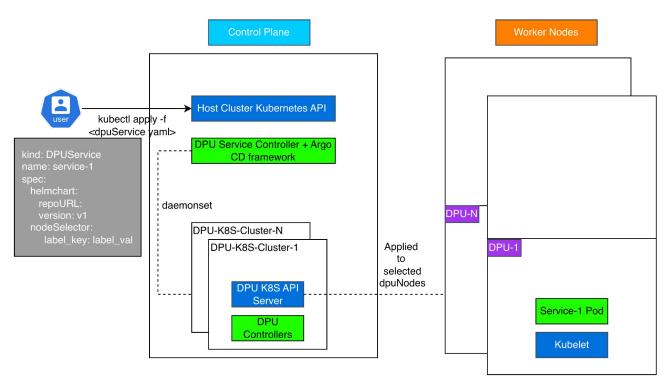
- Incompatibility Failure → Many moving pieces(BFB/services upgrade), no mechanism to verify compatibility
- Zero Rollout Safety → No control over update speed or scale

Specific use cases


Multi-tenancy, hardware acceleration for workload etc

DPF to the Rescue

- BFB Provisioning:
 - One DPUSet CR → provision entire DPU fleet with different DPU flavor and BFB file
 - Automated rollout → DPF handles staging, verification, rollback
- Service Orchestration:
 - DPUService CR → deploy any containerized service (HBN, OVN, custom 3rd party apps)
 - DPUServiceChain CR → connect services with YAML: p0 → firewall → HBN
- Real-Time Observability:
 - Centralized dashboard → DPU health, service status, resource utilization
 - Automated fleet health checks → know problems before users do
- Safe Upgrades:
 - Declarative Rollouts → DPUDeployment manages unified upgrade of both BFB and DPU services.
 - Version Compatibility Check → Blocks incompatible updates between DPU Service and BFB versions
 - Controlled Velocity → Rolling updates with a maxUnavailable budget for predictable, low-disruption rollouts
- Built-in use cases:
 - Multi-tenancy → HBN
 - Hardware acceleration of workload pods → OVN-K8S


DPF - DOCA Platform Framework

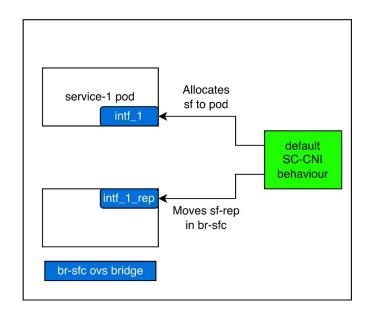
- Platform to manage the lifecycle of DPU and services running on DPU
- Host cluster to manage the workloads running on the x86 node and DPU cluster to manage the DPUs and DPUServices
- DPU clusters are spawn within the main host cluster, these are Kamaji (but could be anything else as well) based small DPU clusters.

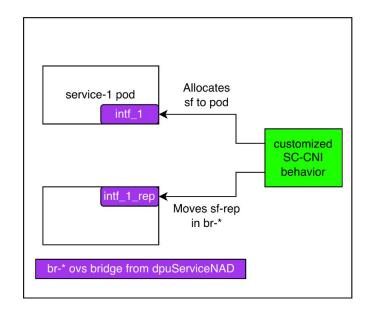
DPF Services

- Abstraction for pods running on the DPU
- Lifecycle management of services via upstream k8s ArgoCD framework
- Along with DPF system services, user can run 3rd party services as well, user needs to create/define Helm chart for the service and use DPUService abstraction.

SC - Service Chaining

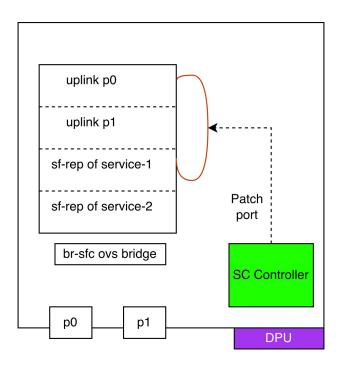
- SC allows you define a pipeline in between DPUServices
- SC is an OpenFlow controller
- DPUServiceNAD allows you to define where to plug resources and the resource type
- DPUServiceInteface defines reusable network interface templates that DPUServices reference to declare their connectivity requirements
- DPUServiceChain orchestrates OpenFlow rules in OVS bridge on DPUs by chaining service interfaces together (service-to-service or service-to-uplink or uplink-to-service)

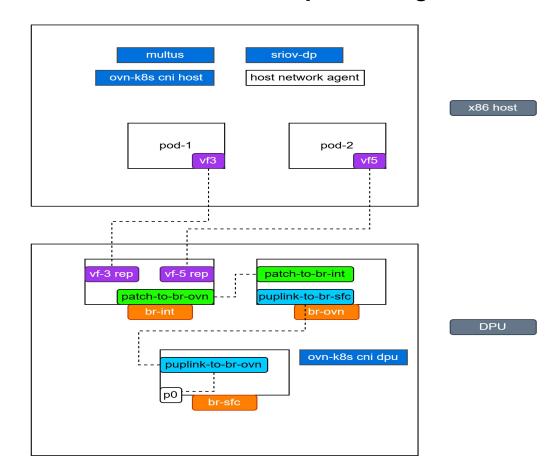

kind:DPUServiceInterface spec:
 labels:
 interface: intf_1
 interfaceType: service service:
 serviceid: service-1
 ifname: intf_1


kind:DPUServiceChain
spec:
switches:
- ports:
- serviceInterface:
matchLabels:
uplink: p1
- serviceInterface:
matchLabels:
interface:intf_1

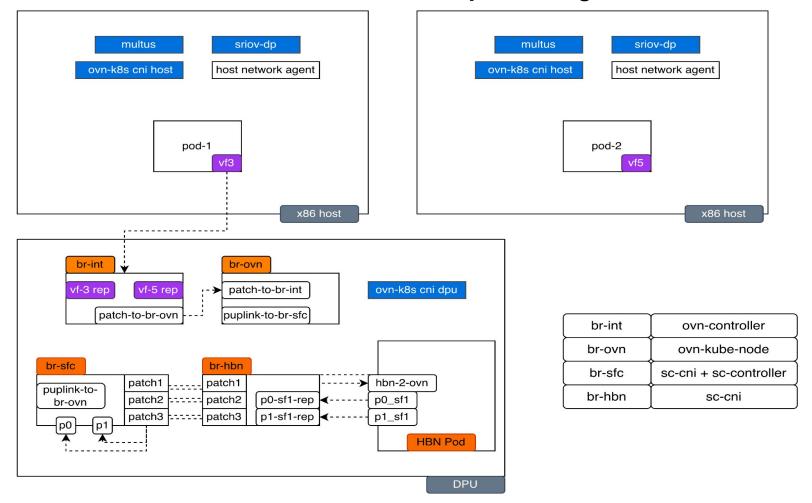
kind:DPUServiceNAD spec: bridge: br-sfc ipam: true resourceType: sf serviceMTU: 1500

SC CNI


• When SC CNI allocates sf to the DPUService pod and adds the sf-rep into the OVS bridge (default br-sfc, but can change based on DPUServiceNAD configuration), it also adds metadata specific to the DPFService on the coresponding OVS port.



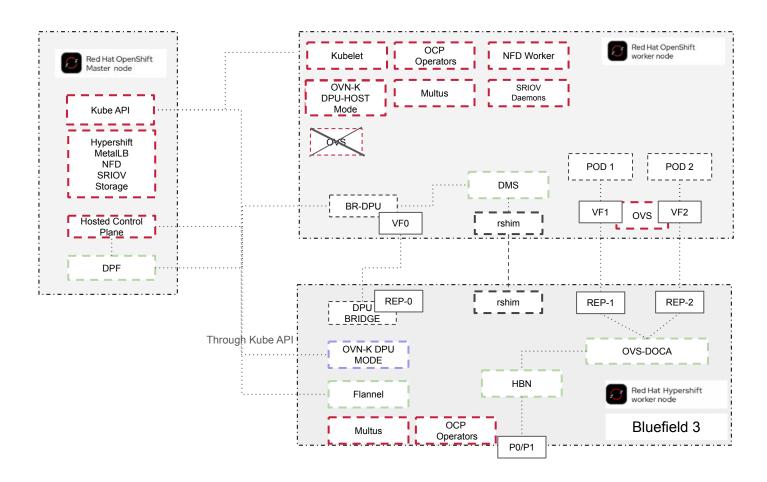
SC controller


• When SC controller is looking at the chain abstraction ,it can filter through the metadata and can figure out it needs to create a patch paneling between ovs-port1 and ovs-port2.

Hardware acceleration of workload pods using OVN-K8S CNI

Hardware acceleration of workload pods using OVN-K8S +HBN

Perf numbers


→ perf_testing → perf_testingcat iperf_throughput_logs head -n 50 Tost 1/10	cat /tmp/em_perf_memory.log	Linux 6.8.6-78-generic (morker1) 89/84/25 _x86_64_ (112 CP U)	Power measurements will start in 0 seconds time.		
Text 1/10 Smalling inerf3 text with size of 250% for 120 sec on cores 36-55 TOTAL_THROUGHOUT 323.3 Text 2/20 Remaining inerf3 text with size of 250% for 120 sec on cores 36-55 TOTAL_THROUGHOUT 333.00 Remaining inerf3 text with size of 250% for 120 sec on cores 36-55 TOTAL_THROUGHOUT 330.00 Remaining inerf3 text with size of 250% for 120 sec on cores 36-55 TOTAL_THROUGHOUT 320.00 Text 5/10 Remaining inerf3 text with size of 250% for 120 sec on cores 36-55 TOTAL_THROUGHOUT 377.3 Text 5/10 Remaining inerf3 text with size of 250% for 120 sec on cores 36-55 TOTAL_THROUGHOUT 350.00 TOTAL_THROUGHOUT 350.0	St. Prop. St. St	Linux 6.8.0-76-generic (Sorkert)	Description Property Proper		
iperf throughput	memory	cpu	power consumption		

Integration Challenges

- Utilizing the Cluster Network Operator to activate dpu-host mode.
- Migrating from a legacy custom downstream image for OVN-Kubernetes to the current upstream version.
- Adopting HyperShift for managing hosted clusters.
- Standardizing on RHCOS instead of Ubuntu.
- Adapting all necessary operators from upstream versions to their OpenShift counterparts, incorporating changes to support the new model.
- Addressing the stricter OpenShift security model, which requires per-pod adaptation compared to vanilla Kubernetes.

OpenShift Networking with NVIDIA BlueField-3 and DPF

Cluster Network Operator DPU-Host Changes

 Successfully restored and validated DPU-Host mode functionality after ~2 years of inactivity.

openshift/clusternetwork-operator

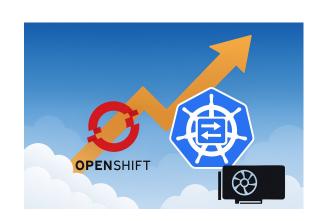
Create and manage cluster networking configuration

 Defined and enforced a specific list of compatible OVN-Kubernetes features for DPU-Host mode deployments.

A 168
Contributors

☆ 107

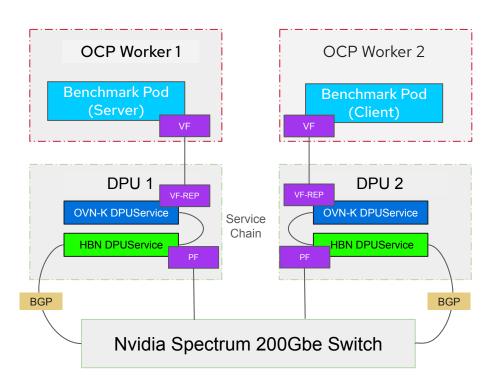
♀ 263 Forks


OVN-Kubernetes: Shifting to Upstream first mentality

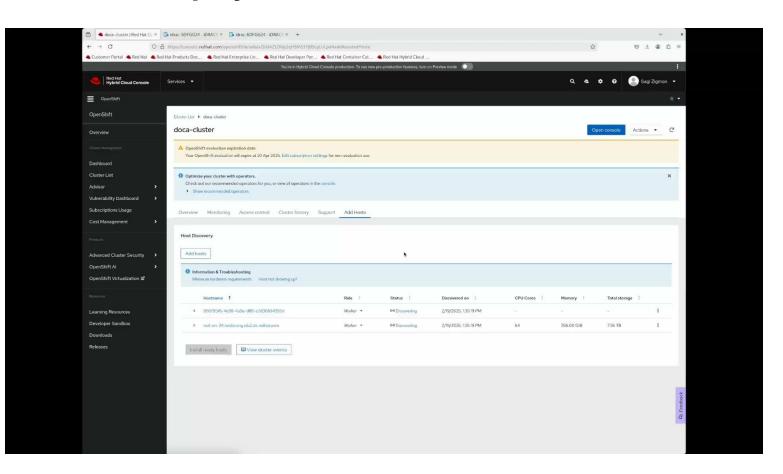
- Key challenges were lack of CI, constant shifting codebase. The required DPU changes were in core codebase sections.
- A two-cluster model was introduced.
- OVN-Kubernetes is now aware of both slow and high-speed networks.
- Currently supporting a small set of features
- All workloads on the DPU host are offloaded. There is a need to have hybrid workloads (with both accelerated and non accelerated traffic).

OVN-Kubernetes Future Work

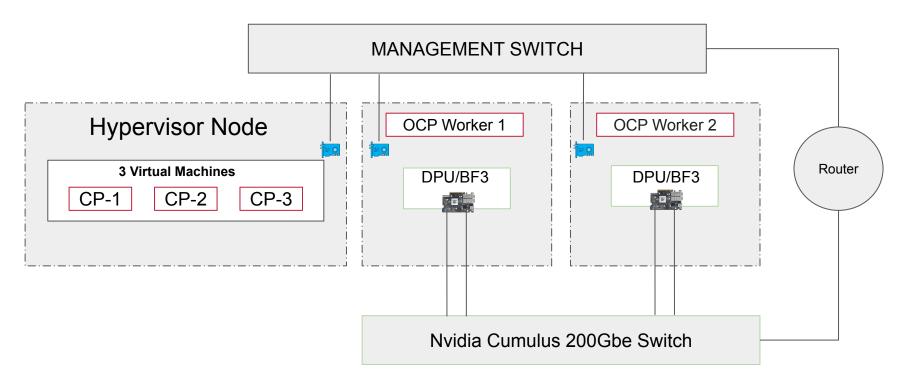
- OVN-Kubernetes as Primary CNI for DPU Cluster
- Transition away from Flannel dependency
 - Support multiple OVN-Kubernetes instances (2+) on a single host
 - POC of enabling two instances OVN-Kubernetes on a single node with different modes was done already
- Enable RDMA accelerated traffic in Openshift
 - Unlock high-performance networking capabilities for data-intensive workloads
- Enable the currently untested features:
 - Egress IP, QoS, Admin Network Policy, Node Identity ...
- Selective Pod Offloading
 - Explore on-demand pod offloading strategy
 - Move from "offload everything" to targeted offloading based on workload requirements


HyperShift as Dpu Cluster

- Due to the resource constraints of the DPU, some functionalities from HyperShift had to be disabled:
 - Insights, Console, Openshift Samples, Ingress, NodeTuning
 - Reduced ~10GB of memory
- Instead of using the default primary CNI of HyperShift (ovn-kubernetes), this deployment uses Flannel. The reason behind this decision is that two instances of ovn-kubernetes can't run on the DPU at the same time.
- Moving from Ubuntu to RHCOS
- Security requirements
 - Needed to create SCC for each and every pod that DPF uses on Hosted Cluster.


Performance benchmarks results

iPerf Test (iperf3 client)



Deployment and Benchmark Demo

Lab physical connectivity

Journey of supporting RHCOS

- We created a workflow built from scratch <u>coreos/custom-coreos-disk-images</u>.
- First Installer:
 - Used a crude OS with rootfs derived from ubi9 (no systemd) and just dd'd the raw disk image onto the NVMe.
 - Made Nvidia's bootfifo device driver carry ignition instead of their usual bf.cfg file.
 - Ignition is the first-boot provisioning tool in RHCOS that uses a declarative configuration file to set up a machine during its initial startup
 - Early images were with drivers built from source using driver-toolkit.
- Current Installer:
 - The system initiates from in-memory installation artifacts.
 - Uses a custom script that pulls ignition and runs coreos-installer to write image to disk.
- Future plans:
 - BFBs generated from generic aarch64 RHCOS artifacts and not our custom build.
 - Reduce custom script dependency by migrating the ignition pulling logic from the external script into RHCOS itself.
 - Moving to layered model where we pull layer with doca-ovs while in the middle of the installation
 - It will allow to have a single BFB image for all the Opensfhit installation and only build a layer z-stream version

